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Results based on ground truth 2d joints Following [3],
we use the ground truth 2d joints provided by the Human3.6
dataset instead of the output from the stacked hourglass as
the input. The results are shown in Table 1, where our ap-
proach achieves the best performance. Moreover, the MP-
JEP improves by 14.9 mm compared to the results (52.7
mm) of using the 2d joint detections from the stacked hour-
glass.

More visualizations of our mixture density model We
show more visualizing results of our mixture dentity model
in Fig. 1. The level of ambiguity increases from top to bot-
tom. There is no occlusion for the “standing” pose in the
first row, hence, all the outputs from our mixture density
model looks similar. As increasing number of joints are oc-
cluded (second to the fourth row), the output of each kernel
becomes increasingly different. The last row shows a fail-
ure case of our model where none of the five outputs looks
similar to the ground truth pose. The reason is that the out-
put 2d pose from the stacked hourglass (the first column)
is totally wrong, thus our mixture density model cannot re-
cover the 3d pose from the wrong input. Moreover, we can
see that our model try to generate 3d pose hypotheses that
are consistent in 2d projections in all cases.

More qualitative results on MPII dataset We show
more qualitative results on the MPII dataset in Fig. 2 to
demonstrate the generalization capacity of our model. We
choose images where the poses are not common in the Hu-
man3.6 dataset.

The sum-exp-trick used in the training process The loss
function L3D in Eqn. (10) in our paper for one pair of 2D
joints and 3D poses {x, y} can be expressed as:

L3D = − ln

M∑
i=1

αi(x)
(2π)d/2σi(x)d

exp−‖y− µi(x)‖2

2σi(x)2
. (1)

Note that we omit the parameters of the deep network w
for brevity. The right-most term is an exponential of val-
ues which tend to be very small, and this results in an un-
derflow problem after applying the logarithm. We prevent
the underflow problem by applying the log-sum-exp trick.
Specifically, a logarithm of a sum of exponential terms can
be expressed as:

ln

n∑
i=1

exp ti = max
i

(ti)+ ln

n∑
i=1

exp (ti −max
i

(ti)). (2)

We can extend the exponential function within the loga-
rithm in Eqn. (1) to get:

L3D = − ln

M∑
i=1

exp{lnαi(x)−
d

2
ln 2πσ2

i (x) (3)

−‖y− µi(x)‖2

2σi(x)2
},

which we can then apply the log-sum-exp trick expressed in
Eqn. (2).
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Table 1: Quantitative results of MPJPE in millimeter on the Human3.6M when the input is the ground truth 2d joints.
Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.
Moreno et al.[4] 53.5 50.5 65.7 62.4 56.9 80.8 60.6 50.8 55.9 79.6 63.6 61.8 59.4 68.5 62.1 62.1
Martinez et al.[3] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Lee et al.[2] 34.6 39.7 37.2 40.9 45.6 50.5 42.0 39.4 47.3 48.1 39.5 38.0 31.9 41.5 37.2 40.9
Hossain et al.[1] 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Ours 31.1 38.2 33.5 35.5 39.1 46.3 35.6 34.6 45.9 50.7 39.4 36.1 40.3 29.6 31.1 37.8

Figure 1: 3D Pose hypotheses generated by our network. The first column is the input of our network, i.e. the 2D joints
estimated by the stacked hourglass network. The second column is the ground truth 3D pose, and the third to seventh
columns are the hypotheses generated by our network. The last column is the 2D reprojections of all five hypotheses. The
corresponding 2D projection and 3D pose are drawn in the same color. (Best view in color)

Figure 2: Qualitative results on the MPII test set. The first and second columns are the input images and output 2D joint
detections of the stacked hourglass network, the last column is the 3D pose generated by our network
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